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Abstract 

A near-optimal algorithm for “Ulam’s Game” is presented. The relationship between the game and multiple 

error correcting codes is discussed. For many cases, codes derived from winning strategies of the game are optimal 
for the communication scheme with noisy forward and noiseless feedback channels. 
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1. Introduction 

The existence of an optimal or near-optimal 
strategy for playing a cooperative game known to 
us as “Ulam’s Game”, or the game of “Twenty 
Questions with a Liar”, has occupied researchers 
in the past two-three decades [1,7,10,11]. Also, it 
has been known for some time that “Ulam’s 
Game” can form a basis for the analysis of adap- 
tive error correcting codes 1581. 

One of the latest papers by Spencer [15] gives 
a comprehensive theoretical analysis of “Ulam’s 
Game” in terms of what are the players’ neces- 
sary and sufficient conditions to win. However, 
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the major disadvantage of his paper is that it does 
not provide a practical algorithm of generating 
the winning strategy for any particular case of 
interest. Thus, the difficulties in obtaining a reli- 
able procedure for calculating a winning strategy 
for this game - a method that could be extended 
to the determining of an optimal code length q in 

the presence of k errors - has left adaptive error 
correcting schemes behind the major scene of 
modern communication techniques. 

In the first part of our paper, we present a 
simple heuristic that gives optimal and near-opti- 
mal strategies for playing “Ulam’s Game”. In the 
second part, we discuss the correspondence be- 
tween this game and error correcting codes for a 
binary channel with noiseless, delayless feedback. 
We have shown that such a scheme greatly in- 
creases the error correcting capability of the com- 
munication channel. 

0020-0190/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved 

SSDI 0020-O 19O(Y5)00127- 1 



90 E. L. Lander, S. Sarkissian /Information Processing Letters 56 (199.5) 89-93 

2. A strategy for playing “Ulam’s Game” 

In the game of “Twenty Questions with a 
Liar”, one person (the Responder) thinks of a 
“target” object and the other person (the Ques- 
tioner) attempts to identify the target by asking 
questions that can be answered “yes” or “no”. If 
the Responder stipulates that the target is an 
integer in the interval [l, . . . , N], then it is easy to 
see that a bisection search enables the Ques- 
tioner to identify the object in [log,N] questions. 
Furthermore, an adversary argument shows that 
no smaller number of questions will suffice in the 
worst case. 

The Responder is permitted to answer as many 
as k questions with lies, where k is a number 
agreed upon in advance by the players. S.M. 
Ulam posed a special case of this game in his 
autobiography, Adventures of a Mathematician 
[17]. Hence the present name of the problem - 
“Ulam’s Game”. 

The Questioner can ask any question of the 
type: “Is the target a member of the set S?“, 
where S c (1,. . . , N}. The state of knowledge of 
the Questioner at any point in the game is given 
by a collection of disjoint subsets, A,,, A,, . . . , A,, 
where A,UA,U ... UA,c{l,...,N) and 
where Ai is the subset of possible targets under 
the condition that the Responder has told exactly 
i lies (i = 0, . . . , k). For example, suppose N = 4 
and k = 1. If the Questioner initially asks “Is the 
target in the set {1,2}?” and the Responder an- 
swers “yes”, then A,, = (1, 2) and A, = {3, 4). A 
complete game tree, in which the target can be 

l1.2,3.41 

Fig. 1. All numbers in the sets A,, are denoted as {*) and in 

the sets A, as (*)‘. 

identified in five questions (a worst-case optimal 
number) is given in Fig. 1. 

It is not hard to verify that in order for the 
Questioner to win, N, q and k must satisfy the 
inequality 

Spencer [ll] has shown that, when q is suffi- 
ciently large, the Questioner can always win the 
game in q questions, if 

Ni: q 0 j=o k 
+ Ckqk < 24, 

where ck is a constant depending on k. However, 
since this is an asymptotic result, it is not of much 
help in verifying the existence of winning strate- 
gies for specific values of N, q and k. However, 
we have found that a simple heuristic yields a 
nearly optimal strategy for the Questioner. We 
have used his heuristic to confirm the existence of 
winning strategies, as described below. 

Suppose the state of knowledge of the Ques- 
tioner is (A,, A,, . . . , Ak), with r questions re- 
maining to be asked. Let us define the “weight” 
of the state (A,, A,, . . . , A,) as 

wr(A,, A,,...,A,) 

where for notational convenience, 

(:J=(;)+(;)+-+(;). 
By generalization of Cl), it must be the case that 
~@a, A,,. ..,. A,) Q 2’, in order for the Ques- 
tioner to be able to win the game. Hence the 
Questioner is constrained to pose a question for 
which the states (Y,, Yi, . . . , Yk) and (NO, 
N i,. . . , Nk) resulting from “yes” and “no” an- 
swers are such that 

wr_,(Yo, Y ,,.. .,Y,) <2’-‘, 

wr_,( No, N,,. . . , Nk) < 2’-‘, 
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and 

wr( A,, A,, . . . > Ak) 

=w,_,(Y,, Y, ,..., Y,) +w,-,(&, N,,...,&)? 

for any possible question that may be posed. 
Hence the Questioner would seem to be well 
advised to pose a question for which w,._,(Y,,, 
Y r,. . . ,Yk) and w,_,(N,, N,, . . . , Nk) are as nearly 
equal as possible. Let S = S, U S, U . . . U S,, 
where Sj GA,, be a set about which a question is 
asked, and let 

r-1 
Ys = 

i 1 k &I+ -** + 
( 1 

r;l IS,1 

and 

n S = y IA,\S,l+ **. +jr$4,\s,I. 
i 1 

As Spencer observed, 

IW,_,(Y”, Y,,..., Y,) -w,_,(N,, N,,...,N,) I 

= IYs-n,l. 

Accordingly, our heuristic is very simple: 

Choose_S (A,, A ,,..., A,, r> 
y,:=n,:= 0; 

for j = 0 to k 

Choose Sj to minimize 

n, := n, + (;-,!> I Aj\Sj 1; 
endfor 
return (Se, S,, . . . , S,); 

end Choose _ S 

It is necessary to note that Eq. (1) is analogous 
to the well-known sphere-packing inequality for 
(nonadaptive) k-error correcting codes [4]. Ex- 
cept that here the sum represents the number of 
root-to-leaf paths that must exist for each of the 
N possible target objects in a game tree of height 
q, rather than the number of code words in a 
sphere of radius k. 

Therefore, to verify how close the results of 
our heuristic are to the actual optimal solutions, 
we have generated a number of instances for 
which the algorithm is able to find winning strate- 
gies for the Questioner in the smallest number of 
questions satisfying the sphere-packing inequal- 
ity. In Table 1 we have indicated, for given k and 
i, where N = 2’, the smallest number of questions 
for which the heuristic found a winning strategy 
for the Questioner. When this number is greater 
than the minimum number satisfying the sphere- 
packing inequality, the latter number is indicated 
in parentheses. 

3. “Ulam’s Game” vs. error correcting codes 

Suppose the Transmitter is to encode i infor- 
mation bits for transmission to the Receiver, with 
provision for the correction of at most k errors. 
The Transmitter assumes the role of Responder 
and the Receiver the role of Questioner, the two 
parties playing the game cooperatively, making 
reference to the same game tree. The Receiver, 
in the role of Questioner, must guess the correct 
target out of a set of size N = 2’. The Transmit- 
ter, in the role of Responder, anticipates the 
questions that the Receiver wishes to ask. Each 
error that occurs in the transmission amounts to a 
lie told by the Responder, and the Transmitter 
knows this by comparing the signal sent in the 
forward channel to the signal received from the 
feedback channel. 

The target is one of the N = 2’ bit patterns, 
o...o to 1 . . . 1. We propose to predetermine the 
first i questions that are asked. Question j, 1 <j 
G i, is: “Is bit position j of the target pattern a 
l?“. Thus the Transmitter simply transmits the i 
information bits in answer to these first i ques- 
tions, thereby making the code systematic, i.e., 
one having distinct information bits and check 
bits. After the i information bits have been trans- 
mitted, the state of the knowledge of the Re- 
ceiver is (A,,, A,, . . , Ak), where 

IAjI = ! 0 .I 1 
;=o 

)..” 
k. 
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By reference to the feedback channel, the 
Transmitter records the sequence of bits actually 
received by the Receiver. The Transmitter exclu- 
sive-or’s this sequence with the sequence of bits 
actually sent, thereby obtaining an error pattern. 
There are exactly 1 Aj I possible error patterns for 
j transmission errors, for j = 0,. . . , k, for a total 
of ( ik) patterns. The Receiver is able to deter- 
mine the target pattern if and only if the Trans- 
mitter can inform the Receiver of the correct 
error pattern with the 4 -i check bits that re- 
main to be transmitted. 

Remarkably, our heuristic gives results that 
very much correspond to the relation established 
by Berlekamp [2]. According to his “translation 
bound theorem”, the optimal code length for the 
transmission of a message containing i informa- 
tion bits through the channel where k errors may 
occur differs from that for the transmission of the 
same message through the noisy channel with 
k - 1 possible errors in three additional check 
bits. Table 1 shows that only in three cases, 
nameIy, for 8, 11, and 14 information bits, the 
violation is observed. For example, in the case of 
8 information bits and 5 errors, the algorithm has 
generated the code length of 25 bits. However, 
the translation rule predicts only 24 bits for the 

Table 1 

optimal code length. In all other instances, the 
heuristic has produced optimal solutions. 

Most importantly, the above results provide 
good example of the usefulness of the feedback 
channel in communication schemes. The fact that 
a sequential recursive coding strategy increases 
transmission efficiency is well documented in the 
literature [3,5]. Schalkwijk and Post [14] also 
showed that in a binary symmetric channel with 
noiseless feedback code digits can be decoded in 
such a way that the error probability vanishes 
exponentially even for a fixed coding delay. More 
recently Spencer and Winkler [16] observed that 
without a feedback channel no block code can 
correct for more than [q/41 errors, when the 
number of information bits is sufficiently large. 
With a feedback channel, it is possible to correct 
as many as [q/31 errors for any number of infor- 
mation bits i. (Note, however, that some coding 
schemes for two binary forward channels allow 
one to achieve essentially the same efficiency in 
communication as it would be in the presence of 
feedback channel [14].) Also, in comparison with 
the best known multiple-error correcting linear 
codes (e.g., BCH codes) [6,9], the improvements 
in error correcting capability are achieved for 
i a 3 and k > 2 with a few exceptions. 

i k 

1 2 3 4 5 6 I 8 

1 3 5 7 9 11 

2 5 S(7) 1100) 1402) 17(14) 

3 6 9 12(11) 15(14) lB(16) 

4 7 10 13 1605) 1908) 
5 9 12 1504) 1807) 21(20) 

6 10 13 16 1908) 22(21) 

7 11 14 17 20 23 
8 12 15 18 21 25(24) 

9 13 17 20 23 26 

10 14 18 21 24 27 

11 15 19 22 25 28 
12 17 20 23 27 30 
13 18 21 25 28 31 

14 19 22 26 29 32 
1.5 20 24 21 30 34 
16 21 25 28 32 3.5 

13 

20(16) 
21(18) 

22(20) 
24(22) 

25(24) 
26(25) 
28(27) 
2928) 
30 
32(31) 
33 
34 
35 
37 
38 

15 

2308) 
24(21) 

25W 
27(25) 
28(26) 

29(28) 
31(30) 
32(31) 
33 

3504) 
36 
37 

39138) 
40 
41 

17 

26(21) 
27W 
28(25) 

30(27) 
31(29) 
32(31) 
34(32) 
35(34) 

36(35) 
38(37) 

39(38) 
40 
42(41) 
43 
44 
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4. Implementation 

As noted in the previous section, the first 
phase of transmission is a straightforward, non- 
adaptive transmission of i information bits. In 
particular, this means that unlike multiple repeti- 
tion coding [2] our scheme allows bit subse- 
quences of any form. In the second phase of the 
transmission, during which check bits are trans- 
mitted, the Transmitter makes reference to a 
fully worked out game tree. This tree has height 
4 - i. A bit vector of length ( : k) is stored at each 
node of the game tree with each component of 
the bit vector corresponding to a different error 
pattern. Suppose component h is identified with 
the error pattern to be communicated to the 
Receiver. When the Transmitter has arrived at a 
given node of the tree, it transmits the bit found 
in component h of the vector at that node. The 
Transmitter observes the bit returned by the 
feedback channel and proceeds to the child of 
the current node, as specified by the bit returned. 
Thus, only a few machine language instructions 
need to be executed for each successive check bit 
transmitted. 

One of the advantages of implementing left- 
to-right decoding strategy presented here is that 
in practice it is very likely that the Receiver will 
be able to decode the transmitted message before 
the last bit of the error pattern is received. In the 
contrast to that, simple block coding strategies 
developed by Schalkwijk [12] lead to the reverse 
(right-to-left) direction of decoding: this implies 
that the whole codeword must be scanned every 
time. 

In addition, it is observed that for a given 
number of information bits the actual size of a 
game tree as a percent of the upper bound de- 
creases as the number of errors to be corrected 
increases. For instance, an g-error correcting code 
with 6 information bits requires only 21.2 

megabytes of storage, which corresponds to about 
8.3% of the upper bound of 256 megabytes. 
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